

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Vidscraper 0.5.2 documentation

Welcome to Vidscraper’s documentation!

Vidscraper is a clean, simple library for a couple of rather messy
issues:

	Retrieving the source video from a “flash-only” website

	Finding out contextual data about a pasted url: title/description/etc

Vidscraper provides a unified api for an issue that requires a lot of
one-off scraping.

Requirements

	json (python2.6) or simplejson

	BeautifulSoup 3.0.8 or 3.2

	feedparser

Optional

	oauth2 (for some APIs *cough* Vimeo searching *cough* which require authentication)

	nose (for tests)

Contents

	Getting Started
	Scraping video pages

	Getting videos for a feed

	Searching video services

	Exceptions

	Suite API
	The Suite Registry

	Built-in Suites

	ScrapedVideo API

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2011, Participatory Culture Foundation.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.0.0

 	0.5.2

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vidscraper 0.5.2 documentation

Getting Started

Scraping video pages

Most use cases will simply require the auto_scrape function. Usage is
incredibly easy:

>>> from vidscraper import auto_scrape
>>> video = auto_scrape("http://www.youtube.com/watch?v=J_DV9b0x7v4")
>>> video.title
u'CaramellDansen (Full Version + Lyrics)'

That’s it! Couldn’t be easier. auto_scrape will determine the right
scraping suite to use for the url you pass in and will use that suite to return a ScrapedVideo instance that represents the data
associated with the video at that url. If no suites are found which support the
url, CantIdentifyUrl will be raised.

If you only need certain fields (say you only need the “file_url” and the
“title” fields), you can pass those fields in as a second argument:

>>> video = auto_scrape(url, fields=['file_url', 'title'])

Video fields

If a ScrapedVideo is initialized without any fields, then
vidscraper will assume you want all of the fields for the video. When the
ScrapedVideo is being loaded, vidscraper will maximize the
number of requested fields that it fills; occasionally, this may mean that it
will make more than one HTTP request. This means that limiting the fields to
what you are actually using can save quite a bit of work.

Getting videos for a feed

If you want to get every video for a feed, you can use
vidscraper.auto_feed():

>>> from vidscraper import auto_feed
>>> results = auto_feed("http://blip.tv/djangocon/rss")

This will read the feed at the given url and return a generator which yields ScrapedVideo instances for each entry in the feed. The instances will be preloaded with metadata from the feed. In many cases this will fill out all the fields that you need. If you need more, however, you can tell the video to load more data manually:

>>> video = results.next()
>>> video.load()

(Don’t worry - if vidscraper can’t figure out a way to get more data, it will simply do nothing!)

Note

Because this function returns a generator, the feed will actually be
fetched the first time the generator’s next() method is called.

Crawling an entire feed

auto_feed() also supports feed crawling for some suites. You use it like this:

>>> from vidscraper import auto_feed
>>> results = auto_feed("http://blip.tv/djangocon/rss", crawl=True)

Now, when the generator runs out of results on the first page, it will
automatically fetch the next page, and then the next, and so on. This is not for
the faint of heart. Depending on the feed you’re crawling, you could be there
for a while.

Searching video services

It’s also easy to run a search on a variety of services that support it. Simply do the following:

>>> from vidscraper import auto_search
>>> results = auto_search(['parrot'], exclude_terms=['dead']).values()

The search will be run on all suites that support searching, and the results will be returned as a dictionary mapping the suite used to the results for that feed.

 Copyright 2011, Participatory Culture Foundation.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.0.0

 	0.5.2

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vidscraper 0.5.2 documentation

Exceptions

	
exception vidscraper.errors.BaseUrlLoadFailure

	Raised if you can’t even load the base url.

	
exception vidscraper.errors.CantIdentifyUrl

	Raised if a url can’t be handled by any known suite, or
if a Video is initialized with an incorrect suite.

	
exception vidscraper.errors.Error

	Base error for vidscraper.

	
exception vidscraper.errors.FieldNotFound

	Raised if a specific field is not found.

	
exception vidscraper.errors.ParsingError

	Raised if parsing a document with lxml fails.

	
exception vidscraper.errors.VideoDeleted

	Raised if the remote server has deleted the video being scraped.

 Copyright 2011, Participatory Culture Foundation.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.0.0

 	0.5.2

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Vidscraper 0.5.2 documentation

Suite API

Vidscraper defines a simple API for “Suites”, classes which provide the
functionality necessary for scraping video information from a specific video
service.

The Suite Registry

	
vidscraper.suites.registry = <vidscraper.suites.base.SuiteRegistry object at 0x3a396d0>

	An instance of SuiteRegistry which is used by vidscraper to
track registered suites.

	
class vidscraper.suites.base.SuiteRegistry

	A registry of suites. Suites may be registered, unregistered, and iterated
over.

	
register(suite)

	Registers a suite if it is not already registered.

	
register_fallback(suite)

	Registers a fallback suite, which used only if no other suite
succeeds. If no fallback is registered, then CantIdentifyUrl will be
raised for unknown videos/feeds.

	
suite_for_feed_url(url)

	Returns the first registered suite which can handle the url as a
feed or raises CantIdentifyUrl if no such suite is found.

	
suite_for_video_url(url)

	Returns the first registered suite which can handle the url as a
video or raises CantIdentifyUrl if no such suite is found.

	
suites

	Returns a tuple of registered suites.

	
unregister(suite)

	Unregisters a suite if it is registered.

Built-in Suites

	
class vidscraper.suites.BaseSuite

	This is a base class for suites, demonstrating the API which is expected
when interacting with suites. It is not suitable for actual use; some vital
methods must be defined on a suite-by-suite basis.

	
api_fields = set([])

	A set of Video fields that this suite can supply
optimization.

	
apply_video_data(video, data)

	Stores values from a data dictionary on the corresponding
attributes of a Video instance.

	
available_fields

	Returns a set of all of the fields we could possible get from this
suite.

	
feed_regex = None

	A string or precompiled regular expression which will be matched against
feed urls to check if they can be handled by this suite.

	
get_api_url(video)

	Returns the url for fetching API data. May be implemented by
subclasses if an API is available.

	
get_feed(url, **kwargs)

	Returns a feed using this suite.

	
get_feed_description(feed, feed_response)

	Returns a description of the feed based on the feed_response, or
None if no description can be determined. By default, assumes that
the response is a feedparser structure and returns a value based
on that.

	
get_feed_entries(feed, feed_response)

	Returns an iterable of feed entries for a feed_response as returned
from get_feed_response(). By default, this assumes that the
response is a feedparser structure and tries to return its
entries.

	
get_feed_entry_count(feed, feed_response)

	Returns an estimate of the total number of entries in this feed, or
None if that cannot be determined. By default, returns the number
of entries in the feed.

	
get_feed_etag(feed, feed_response)

	Returns the etag for a feed_response, or None if no such url
can be determined. By default, assumes that the response is a
feedparser structure and returns a value based on that.

	
get_feed_guid(feed, feed_response)

	Returns the guid of the feed_response, or None if no guid can
be determined. By default, assumes that the response is a
feedparser structure and returns a value based on that.

	
get_feed_info_response(feed, response)

	In case the response for the given feed needs to do other work on
reponse to get feed information (title, &c), suites can override
this method to do that work. By default, this method just returns the
response it was given.

	
get_feed_last_modified(feed, feed_response)

	Returns the last modification date for the feed_response as a
python datetime, or None if no date can be determined. By default,
assumes that the response is a feedparser structure and returns
a value based on that.

	
get_feed_response(feed, feed_url)

	Returns a parsed response for this feed. By default, this uses
feedparser to get a response for the feed_url and returns
the resulting structure.

	
get_feed_thumbnail_url(feed, feed_response)

	Returns the thumbnail URL of the feed_response, or None if no
thumbnail can be found. By default, assumes that the response is a
feedparser structur4e and returns a value based on that.

	
get_feed_title(feed, feed_response)

	Returns a title for the feed based on the feed_response, or
None if no title can be determined. By default, assumes that the
response is a feedparser structure and returns a value based on
that.

	
get_feed_url(url)

	Some suites can handle URLs that are not technically feeds, but can
convert them into a feed that is usable. This method can be overidden
to do that conversion. By default, this method just returns the
original URL.

	
get_feed_webpage(feed, feed_response)

	Returns the url for an HTML version of the feed_response, or
None if no such url can be determined. By default, assumes that
the response is a feedparser structure and returns a value based
on that.

	
get_next_feed_page_url(feed, feed_response)

	Based on a feed_response and a VideoFeed instance,
generates and returns a url for the next page of the feed, or returns
None if that is not possible. By default, simply returns None.
Subclasses must override this method to have a meaningful feed crawl.

	
get_next_search_page_url(search, search_response)

	Based on a VideoSearch and a search_response, generates
and returns a url for the next page of the search, or returns None
if that is not possible. By default, simply returns
None. Subclasses must override this method to have a meaningful
search crawl.

	
get_oembed_url(video)

	Returns the url for fetching oembed data. By default, generates an
oembed request url based on oembed_endpoint or raises
NotImplementedError if that is not defined.

	
get_scrape_url(video)

	Returns the url for fetching scrape data. May be implemented by
subclasses if a page scrape should be supported.

	
get_search(query, **kwargs)

	Returns a search using this suite.

	
get_search_response(search, search_url)

	Returns a parsed response for the given search_url. By default,
assumes that the url references a feed and passes the work off to
get_feed_response().

	
get_search_results(search, search_response)

	Returns an iterable of search results for a VideoSearch and
a search_response as returned by get_search_response(). By
default, assumes that the search_response is a feedparser
structure and passes the work off to get_feed_entries().

	
get_search_time(search, search_response)

	Returns the amount of time required by the service provider for the
suite to execute the search. By default, simply returns None.

	
get_search_total_results(search, search_response)

	Returns an estimate for the total number of search results based on the
first response returned by get_search_response() for the
VideoSearch. By default, assumes that the url references a
feed and passes the work off to get_feed_entry_count().

	
get_search_url(search)

	Returns a url which this suite can use to fetch search results for the
given string. Must be implemented by subclasses.

	
get_video(url, **kwargs)

	Returns a video using this suite.

	
handles_feed_url(url)

	Returns True if this suite can handle the url as a feed and
False otherwise. By default, this method will check whether the url
matches feed_regex or raise a NotImplementedError if
that is not possible.

	
handles_video_url(url)

	Returns True if this suite can handle the url as a video and
False otherwise. By default, this method will check whether the url
matches video_regex or raise a NotImplementedError if
that is not possible.

	
load_video_data(video)

	Makes the smallest requests necessary for loading all the missing
fields for the video. The data is immediately stored on the video
instance.

	
oembed_endpoint = None

	A URL which is an endpoint for an oembed API.

	
oembed_fields

	A set of Video fields that this suite can supply
through an oembed API. By default, this will be empty if
oembed_endpoint is None and a base set of commonly
available fields otherwise.

	
parse_api_error(exc)

	Parses a :module:`urllib` exception raised during the API request.
If we re-raise an exception, that’s it; otherwise, the dictionary
returned will be used to populate the Video object.

By default, just re-raises the given exception.

	
parse_api_response(response_text)

	Parses API response text into a dictionary mapping
Video field names to values. May be implemented by
subclasses if an API is available.

	
parse_feed_entry(entry)

	Given a feed entry (as returned by get_feed_entries()), creates
and returns a dictionary containing data from the feed entry, suitable
for application via apply_video_data(). Must be implemented by
subclasses.

	
parse_oembed_error(exc)

	Parses a :module:`urllib` exception raised during the OEmbed request.
If we re-raise an exception, that’s it; otherwise, the dictionary
returned will be used to populate the Video object.

By default, just re-raises the given exception.

	
parse_oembed_response(response_text)

	Parses oembed response text into a dictionary mapping
Video field names to values. By default, this assumes
that the commonly-available fields title, author_name,
author_url, thumbnail_url, and html are available.

	
parse_scrape_error(exc)

	Parses a :module:`urllib` exception raised during the scrape request.
If we re-raise an exception, that’s it; otherwise, the dictionary
returned will be used to populate the Video object.

By default, just re-raises the given exception.

	
parse_scrape_response(response_text)

	Parses scrape response text into a dictionary mapping
Video field names to values. May be implemented by
subclasses if a page scrape should be supported.

	
parse_search_result(search, result)

	Given a VideoSearch instance and a search result (as
returned by get_search_results()), returns a dictionary
containing data from the search result, suitable for application via
apply_video_data(). By default, assumes that the result is a
feedparser entry and passes the work off to
parse_feed_entry().

	
scrape_fields = set([])

	A set of Video fields that this suite can supply

	
video_regex = None

	A string or precompiled regular expression which will be matched against
video urls to check if they can be handled by this suite.

 Copyright 2011, Participatory Culture Foundation.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.0.0

 	0.5.2

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Vidscraper 0.5.2 documentation

ScrapedVideo API

 Copyright 2011, Participatory Culture Foundation.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.0.0

 	0.5.2

 Navigation

 	
 index

 	
 modules |

 	Vidscraper 0.5.2 documentation

 Python Module Index

 v

 			

 		
 v	

 	[image: -]
 	
 vidscraper	

 	
 	
 vidscraper.errors	

 Copyright 2011, Participatory Culture Foundation.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.0.0

 	0.5.2

 Navigation

 	
 index

 	
 modules |

 	Vidscraper 0.5.2 documentation

Index

 A
 | B
 | C
 | E
 | F
 | G
 | H
 | L
 | O
 | P
 | R
 | S
 | U
 | V

A

 	

 	api_fields (vidscraper.suites.BaseSuite attribute)

 	apply_video_data() (vidscraper.suites.BaseSuite method)

 	

 	available_fields (vidscraper.suites.BaseSuite attribute)

B

 	

 	BaseSuite (class in vidscraper.suites)

 	

 	BaseUrlLoadFailure

C

 	

 	CantIdentifyUrl

E

 	

 	Error

F

 	

 	feed_regex (vidscraper.suites.BaseSuite attribute)

 	

 	FieldNotFound

G

 	

 	get_api_url() (vidscraper.suites.BaseSuite method)

 	get_feed() (vidscraper.suites.BaseSuite method)

 	get_feed_description() (vidscraper.suites.BaseSuite method)

 	get_feed_entries() (vidscraper.suites.BaseSuite method)

 	get_feed_entry_count() (vidscraper.suites.BaseSuite method)

 	get_feed_etag() (vidscraper.suites.BaseSuite method)

 	get_feed_guid() (vidscraper.suites.BaseSuite method)

 	get_feed_info_response() (vidscraper.suites.BaseSuite method)

 	get_feed_last_modified() (vidscraper.suites.BaseSuite method)

 	get_feed_response() (vidscraper.suites.BaseSuite method)

 	get_feed_thumbnail_url() (vidscraper.suites.BaseSuite method)

 	get_feed_title() (vidscraper.suites.BaseSuite method)

 	get_feed_url() (vidscraper.suites.BaseSuite method)

 	

 	get_feed_webpage() (vidscraper.suites.BaseSuite method)

 	get_next_feed_page_url() (vidscraper.suites.BaseSuite method)

 	get_next_search_page_url() (vidscraper.suites.BaseSuite method)

 	get_oembed_url() (vidscraper.suites.BaseSuite method)

 	get_scrape_url() (vidscraper.suites.BaseSuite method)

 	get_search() (vidscraper.suites.BaseSuite method)

 	get_search_response() (vidscraper.suites.BaseSuite method)

 	get_search_results() (vidscraper.suites.BaseSuite method)

 	get_search_time() (vidscraper.suites.BaseSuite method)

 	get_search_total_results() (vidscraper.suites.BaseSuite method)

 	get_search_url() (vidscraper.suites.BaseSuite method)

 	get_video() (vidscraper.suites.BaseSuite method)

H

 	

 	handles_feed_url() (vidscraper.suites.BaseSuite method)

 	

 	handles_video_url() (vidscraper.suites.BaseSuite method)

L

 	

 	load_video_data() (vidscraper.suites.BaseSuite method)

O

 	

 	oembed_endpoint (vidscraper.suites.BaseSuite attribute)

 	

 	oembed_fields (vidscraper.suites.BaseSuite attribute)

P

 	

 	parse_api_error() (vidscraper.suites.BaseSuite method)

 	parse_api_response() (vidscraper.suites.BaseSuite method)

 	parse_feed_entry() (vidscraper.suites.BaseSuite method)

 	parse_oembed_error() (vidscraper.suites.BaseSuite method)

 	parse_oembed_response() (vidscraper.suites.BaseSuite method)

 	

 	parse_scrape_error() (vidscraper.suites.BaseSuite method)

 	parse_scrape_response() (vidscraper.suites.BaseSuite method)

 	parse_search_result() (vidscraper.suites.BaseSuite method)

 	ParsingError

R

 	

 	register() (vidscraper.suites.base.SuiteRegistry method)

 	register_fallback() (vidscraper.suites.base.SuiteRegistry method)

 	

 	registry (in module vidscraper.suites)

S

 	

 	scrape_fields (vidscraper.suites.BaseSuite attribute)

 	suite_for_feed_url() (vidscraper.suites.base.SuiteRegistry method)

 	suite_for_video_url() (vidscraper.suites.base.SuiteRegistry method)

 	

 	SuiteRegistry (class in vidscraper.suites.base)

 	suites (vidscraper.suites.base.SuiteRegistry attribute)

U

 	

 	unregister() (vidscraper.suites.base.SuiteRegistry method)

V

 	

 	video_regex (vidscraper.suites.BaseSuite attribute)

 	VideoDeleted

 	

 	vidscraper.errors (module)

 Copyright 2011, Participatory Culture Foundation.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	1.0.0

 	0.5.2

 _static/plus.png

_static/down.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Vidscraper 0.5.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, Participatory Culture Foundation.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		1.0.0

 		0.5.2

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

